Best proximity point results in partially ordered metric spaces via simulation functions
نویسنده
چکیده
*Correspondence: [email protected] Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia Abstract We obtain sufficient conditions for the existence and uniqueness of best proximity points for a new class of non-self mappings involving simulation functions in a metric space endowed with a partial order. Some interesting consequences including fixed point results via simulation functions are presented.
منابع مشابه
Non-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملBest proximity point theorems in 1/2−modular metric spaces
In this paper, first we introduce the notion of $frac{1}{2}$-modular metric spaces and weak $(alpha,Theta)$-$omega$-contractions in this spaces and we establish some results of best proximity points. Finally, as consequences of these theorems, we derive best proximity point theorems in modular metric spaces endowed with a graph and in partially ordered metric spaces. We present an ex...
متن کاملFixed point theorems under weakly contractive conditions via auxiliary functions in ordered $G$-metric spaces
We present some fixed point results for a single mapping and a pair of compatible mappings via auxiliary functions which satisfy a generalized weakly contractive condition in partially ordered complete $G$-metric spaces. Some examples are furnished to illustrate the useability of our main results. At the end, an application is presented to the study of exi...
متن کاملRandom coincidence point results for weakly increasing functions in partially ordered metric spaces
The aim of this paper is to establish random coincidence point results for weakly increasing random operators in the setting of ordered metric spaces by using generalized altering distance functions. Our results present random versions and extensions of some well-known results in the current literature.
متن کاملGeneralized $F$-contractions in Partially Ordered Metric Spaces
We discuss about the generalized $F$-contraction mappings in partially ordered metric spaces. For this, we first introduce the notion of ordered weakly $F$-contraction mapping. We also present some fixed point results about this type of mapping in partially ordered metric spaces. Next, we introduce the notion of $acute{mathrm{C}}$iri$acute{mathrm{c}}$ type generalized ordered weakly $F$-contrac...
متن کامل